FREE α -EXTENSIONS OF AN ARCHIMEDEAN VECTOR LATTICE AND THEIR TOPOLOGICAL DUALS

ANTHONY J. MACULA

ABSTRACT. Arch denotes the category of Archimedean vector lattices with vector lattice homomorphisms, and α denotes an uncountable cardinal number or the symbol ∞ . Arch (α) denotes the category of Arch objects with α -complete Arch morphisms.

In this paper we construct, for each $L \in |\operatorname{Arch}|$, α -complete extensions L' of L that lift Arch morphisms from L to α -complete Arch morphisms from L'. Specifically, we construct the *free* α -extension and the *free* α -regular extension of an Arch object L. By virtue of the latter, the full subcategory of α -complete objects, in $\operatorname{Arch}(\alpha)$, is epireflective. The proofs work in Boolean algebras and recover the results obtained in [K, Y, and S]. Our proofs are different and, it can be argued, more natural.

 \mathscr{W} denotes the category of Arch objects with distinguished weak unit and Arch morphisms that preserve units. We exploit a certain contravariant functor $Y:\mathscr{W}\to \operatorname{Comp}$ (the so-called Yosida functor, analogous to the Stone-space functor) from \mathscr{W} to the category of compact Hausdorff spaces with continuous functions, to convert algebraic results in \mathscr{W} to topological results in the topological category $\alpha\text{-}SpFi$. Specifically, we show that the Yosida "dual" of the \mathscr{W} -free α -regular extension of C(X) is the α -disconnected α -SpFi monocoreflection of the compact space X, thereby showing that the full subcategory of α -disconnected spaces, in α -SpFi, is monocoreflective.

1. Introduction

 α denotes an uncountable cardinal number or the symbol ∞ . The meaning of $\alpha = \infty$ will be clear from the context. When we write $\alpha < \infty$ or $|A| < \infty$, where A is a set, we mean that α or |A| is an arbitrary cardinal number.

Arch denotes the category of Archimedean vector lattices with vector lattice homomorphisms. An element $u \in L \in |Arch|$ is called a *weak unit* if the band (complete ideal) generated by u is all of L [LZ, dJvR]. u is called a *strong unit* if the principal ideal generated by u is all of L. \mathscr{W} (\mathscr{S}) denote the category of Arch objects with distinguished weak (strong) unit and unit preserving Arch

Received by the editors December 1, 1989 and, in revised form, May 16, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 06A23, 06B30, 18B30, 54C10, 54G05; Secondary 06B15, 06F15.

Key words and phrases. Free α -regular extension, free α -extension, α -complete vector lattice, α -disconnected space, Yosida space.

morphisms. Obviously a strong unit is a weak unit, so ${\mathscr S}$ is a subcategory of ${\mathscr W}$.

An Arch morphism $\varphi: L \to M$ is called α -complete if, for $A \subset L$ with $|A| < \alpha$, we have that $\varphi(\bigvee^L A) = \bigvee^M \varphi[A]$ whenever $\bigvee^L A$ exists in L. Arch (α) , $\mathscr{W}(\alpha)$, and $\mathscr{S}(\alpha)$ denote the categories of Arch, \mathscr{W} , and \mathscr{S} objects with α -complete morphisms respectively.

An $L \in |\operatorname{Arch}|$ is called α -complete $\bigvee^L A$ exists in L for all bounded above $A \subset L$ with $|A| < \alpha$.

Recall L is called *Dedekind complete* if every subset of L that is bounded above has a supremum in L; thus L is ∞ -complete if and only if L is Dedekind complete.

 $L\subseteq M$ denotes that L is an Arch subspace of M (i.e., L is a vector lattice subspace of M), while $L\subseteq^{\alpha}M$ denotes that, in addition to $L\subseteq M$, the inclusion of L into M is an α -complete Arch morphism. As usual, we reserve \subset for ordinary set inclusion.

The next two definitions, as do the definitions of an α -complete morphism and an α -complete object, make sense in \mathcal{W} , \mathcal{S} , and Boolean algebras $(\equiv \mathcal{B} \mathcal{A})$, as well as in Arch.

For $L \subseteq M$, we say that L is α -full subspace in, or of, M if $b = \bigvee^M \{A : A \subset L, |A| < \alpha\}$ implies that $b \in L$ (i.e., $b = \bigvee^L A$). We call an Arch embedding $\varphi : L \hookrightarrow M$ α -full if $\varphi[L]$ is α -full in M.

What we call an α -full subspace of M, Sikorski (in §23 of [S] for Boolean algebras) calls an α -subalgebra of M.

For $L\subseteq M$, we say that L α -generates M if M is the smallest α -full subspace of M that contains L. That is, if L' is α -full in M and $L\subseteq L'$, then L'=M.

Let L and M be Arch objects and let $\varphi:L\hookrightarrow M$ be an Arch morphism with M α -complete. We say the pair (φ,M) is an Arch free α -extension of L if $\varphi[L]$ α -generates M, and each Arch morphism from L into an α -complete Arch object N can be extended to an α -complete Arch morphism from M into N. We say the pair (φ,M) is an Arch free α -regular extension of L if φ is an Arch α -complete embedding, $\varphi[L]$ α -generates M, and each α -complete Arch morphism from L into an α -complete Arch object N can be extended to an α -complete Arch morphism from M into N.

Analogously, one obtains the definitions of a W, S, or $\mathscr{B}\mathscr{A}$ free α -regular extension and a W, S, or $\mathscr{B}\mathscr{A}$ free α -extension by replacing the symbol Arch with W, S, or $\mathscr{B}\mathscr{A}$ in the above.

In §3, we indicate that, for each L, there is essentially, one free α -regular extension, and one free α -extension, of L.

Henceforth, L, M, and N denote Arch objects, and maps between them are always considered to be Arch morphisms unless otherwise stated.

For $\alpha<\infty$, Yaqub shows in [Y] that every Boolean algebra has a free α -extension. However, in [Ha], Hales shows that the free Boolean algebra on ω generators does not have a free ∞ -extension.

The existence of the free α -regular extension of a Boolean algebra (for $\alpha < \infty$) was first proved by Kerstan in [K], and subsequently, independently by Sikorski and Yaqub in [S₂ and Y] respectively. In [S], Sikorski expands on the idea of free α -regular extensions of Boolean algebras and discusses what

he calls (J, M, m)-extensions. Also, since in $\mathscr{B}\mathscr{A}$, the injective objects are exactly the ∞ -complete Boolean algebras [S, 33.1], the free ∞ -regular extension of a Boolean algebra B is the Dedekind completion of B [S]. Moreover, even though there are no injectives in Arch [Co], the ∞ -regular extension of an $L \in |Arch|$ is the Arch Dedekind completion of L [BH₁, M₁].

What we do here in §3, for $\alpha < \infty$, is construct the Arch free α -extension and the Arch free α -regular extension of an Arch object L. The proofs work in \mathscr{W} and \mathscr{S} , as well as in $\mathscr{B}\mathscr{A}$, and recover the results obtained in [K, Y, and S]. Our proofs are different, and, it can be argued, more natural.

In §4 here we exploit a certain contravariant functor $Y: \mathcal{W} \to \operatorname{Comp}$ (the so-called Yosida functor, analogous to the Stone-space functor) from \mathcal{W} to the category of compact Hausdorff spaces with continuous functions, to convert algebraic results in \mathcal{W} to topological results in the topological category α -SpFi. Specifically, we show that the Yosida "dual" of the \mathcal{W} -free α -regular extension of C(X) is the α -disconnected α -SpFi monocoreflection of the compact space X, thereby showing that the full subcategory of α -disconnected spaces, in α -SpFi, is monocoreflective.

We begin a discussion about the Yosida functor and the category α -SpFi.

2. The Yosida functor and the category α -SpF i

X, Y, and Z denote compact Hausdorff spaces; f, g, and h denote continuous functions; and Comp denotes the category of compact Hausdorff spaces with continuous functions.

We review the Yosida representation theory. For each $L \in |\mathscr{W}|$ there is an associated compact Hausdorff space, Y(L), called the Yosida space of L. See [LZ, BKW, and HeR]. Also for each $\varphi: L \to M$, there is associated continuous function $Y(\varphi): Y(M) \to Y(L)$. See [HR]. It turns out that Y is a faithful (contravariant) functor from \mathscr{W} to Comp. The functor Y works very much like the Stone functor from Boolean algebras to Boolean spaces. Y(L), like the Stone space of a Boolean algebra, is a maximal ideal space. The elements of Y(L) are ideals of L that are maximal for the property of not containing the weak unit. If the weak unit is a strong unit then these ideals are the actual maximal ideals of L. The topology on this space is the hull-kernel topology. In fact, if we view a Boolean algebra, B, as a \mathscr{W} object (i.e., if L(S(B)) is the locally constant real-valued functions on the Stone space S(B), then $L(S(B_1)) \cong L(S(B_2))$ iff $B_1 \cong B_2$, the Yosida functor can be thought of as an extension of the Stone functor.

The following paragraph comes from [BH₂].

The archetypal \mathcal{W} object is C(X) (the ring of continuous real-valued functions on X with the pointwise sup and inf). The weak unit of C(X) will always be taken to be the constant function 1. Note that the weak unit 1 is indeed a strong unit and (C(X), 1) is an \mathcal{S} object. Let D(X) be the set of extended real-valued continuous functions, $f: X \to [-\infty, +\infty]$, for which $f^{-1}(\mathbf{R})$ is dense in X. In the pointwise order, D(X) is a lattice, but usually fails to be a vector space. For $f, g, h \in D(X)$, we say "f + g = h in D(X)" if f(x) + g(x) = h(x) when $x \in f^{-1}(\mathbf{R}) \cap g^{-1}(\mathbf{R}) \cap h^{-1}(\mathbf{R})$ (which is a dense set in X). It may well happen that, for particular $f, g \in D(X)$, there is no $h \in D(X)$ with f + g = h in D(X) (e.g., take $X = [-\infty, +\infty]$, f the obvious

440 A. J. MACULA

extension of $x + \sin x$, and g the extension of -x). However, it may well happen that a subset $L \subset D(X)$ has the property that for all f, $g \in L$ there is an $h \in D(X)$ with f + g = h in D(X); if L is also a vector lattice under the pointwise operation in D(X) and the constant function, $\mathbf{1}$, is in L, then we say " $(L,\mathbf{1})$ (or just L) is a \mathscr{W} object in D(X)", (e.g., C(X) is a \mathscr{W} object, in D(X)). If X has the property that each dense cozero set is C^* -embedded [GJ], then X is called ω_1 -quasi-F (or just quasi-F) [DHH, HVW, BHN, M_2]. If X is ω_1 -quasi-F, then $(D(X),\mathbf{1}) \in |\mathscr{W}|$. See [HJ].

- 2.1 **Theorem** (see [BKW, HR1]). (a) There is a \mathcal{W} isomorphism, $\hat{}: L \to \hat{L} \subset D(Y(L))$, onto a \mathcal{W} object, \hat{L} in D(Y(L)), with $\hat{w}_L = 1$, and \hat{L} separates the points of Y(L).
- (b) If L' is a \mathcal{W} object in D(X) which separates the points of X, and for $a \in L$, if $a \mapsto a'$ is a \mathcal{W} isomorphism from L to L', then there is a homeomorphism $f: X \to Y(L)$ such that $a' = \hat{a} \circ f$ for all $a \in L$.
 - 2.1(b) is used to recognize Yosida representations.
- 2.2 Corollary. Y(C(X)) = X.

Proof. In D(X), C(X) satisfies 2.1(b).

- 2.3 **Theorem** [HR₁]. Let $\varphi_i: L \to M$ for i = 1, 2.
- (a) There is a unique continuous function, $Y(\varphi_1): Y(M) \to Y(L)$, such that $\varphi(a)^{\hat{}} = \hat{a} \circ Y(\varphi_1)$ for all $a \in L$.
 - (b) Y is a faithful functor, i.e., if $\varphi_1 \neq \varphi_2$, then $Y(\varphi_1) \neq Y(\varphi_2)$.
- (c) φ_1 is one-to-one if and only if $Y(\varphi_1)$ is onto, and if φ_1 is onto, then $Y(\varphi_1)$ is one-to-one.
- (d) Let $\gamma: C(X) \to M$ and $M \in |\mathcal{S}|$. Then $Y(\gamma): Y(M) \to X$ is one-to-one if and only if γ is onto.

Henceforth, L and \hat{L} are identified.

Thus we will consider $a \in L$ as an extended real-valued function on Y(L).

The next proposition is straightforward.

- **2.4 Proposition.** Let $f: X \to Y$. Define $f': C(Y) \to C(X)$ by $f'(g) = g \circ f$ for $g \in C(Y)$ [GJ, 10.2]. Then f' is a \mathscr{W} morphism and Y(f') = f.
- 2.5 **Theorem** (Banach-Stone). A function $f: X \to Y$ is a homeomorphism if and only if $f': C(Y) \to C(X)$ is an isomorphism in \mathcal{W} .

Proof. Y(f') = f. Apply 2.3(c) and (d).

We begin a discussion of the topological category α -SpF i. See [BHM, BHN, M_1 , M_2 , and BH_3].

Let $\operatorname{Coz}(X)=\{f^{-1}(\mathbf{R}\setminus\{0\}): f\in C(X)\}$. A subset $V\subset X$ is said to be an α -cozero set if

$$V = \bigcup \{U_i : i \in I, |I| < \alpha, U_i \in Coz(X)\}.$$

Note that an ω_1 -cozero set is a cozero set. Recall that by " $|I| < \infty$ " we mean that "|I| is unrestricted," so that every open set is an ∞ -cozero set. We denote the collection of α -cozero sets of X by $\operatorname{Coz}_{\alpha}(X)$. Let $G_{\alpha}X$ denote the filter base of dense members of $\operatorname{Coz}_{\alpha}(X)$.

A continuous function $f: X \to Y$ is called an α -SpFi morphism if $f^{-1}(G) \in G_{\alpha}X$ whenever $G \in G_{\alpha}Y$. We thus have a topological category, denoted α -SpFi, which consists of compact Hausdorff spaces and α -SpFi morphisms.

Below (2.6) is a cardinal generalization of 4.2(c) of $[BH_1]$. See also $[M_2]$. It tells us that the Yosida functor converts an α -complete \mathscr{W} morphism into an α -SpFi morphism, and, that every α -SpFi morphism arises from an α -complete \mathscr{W} morphism.

2.6 **Lemma.** $\varphi: L \to M$ is α -complete if and only if $Y(\varphi): Y(M) \to Y(L)$ is an α -SpFi morphism. Moreover, a function $f: X \to Y$ is an α -SpFi morphism if and only if f' (2.5) is α -complete.

From this result it is routine to see that Y restricted to $\mathcal{W}(\alpha)$ is a functor to α -SpFi.

Moreover, Y take $\mathcal{W}(\alpha)$ epics to α -SpFi monics. Recall that in a category, a morphism e is called epic if $f_1 \circ e = f_2 \circ e$ implies that $f_1 = f_2$, and a morphism m is called monic if $m \circ f_1 = m \circ f_2$ implies that $f_1 = f_2$. We have

2.7 **Lemma** $[M_2]$. $\varphi: L \to M$ is epic in $\mathscr{W}(\alpha)$ if and only if $Y(\varphi): Y(M) \to Y(L)$ is monic in α -SpFi.

Note that epics in $\mathcal{W}(\alpha)$ are not always surjective, nor are the monics in α -SpFi always injective [BHM].

A space X is said to be α -disconnected if the closure of every α -cozero is open. It is obvious that the notions of ∞ -disconnected and extremally disconnected (and ω_1 -disconnected and basically disconnected) are equivalent.

As the next two statements indicate, the topological concept of α -disconnected has an algebraic counterpart. The first is a cardinal generalization of (3.3) ((a) \Rightarrow (d)) of [BH₁]. See also [M₁].

2.8 **Lemma.** Let $L \in |\mathcal{W}|$. If L is α -complete, then Y(L) is α -disconnected.

The converse of 2.8 is not true $[BH_1, M_1, M_2]$. However, if we only consider \mathcal{W} objects of the form C(X), for compact X, we get the following well-known result:

2.9 **Theorem** (Stone-Nakano). C(X) is α -complete if and only if X is α -disconnected.

Note that one direction of 2.9 follows from 2.8 and the fact that Y(C(X)) = X (2.2).

3. Free α -extensions

- 3.1 **Proposition** (see [M₂]). Let $\varphi: L \to M$. The following are equivalent.
 - (a) φ is α -complete.
- (b) There is a $c \in L$ such that whenever $B \subset L$, $|B| < \alpha$, and $c = \bigvee^L B$, then $\varphi(c) = \bigvee^M \varphi[B]$.
- (c) For $A \subset L$ with $|A| < \alpha$, we have that $\varphi(\bigwedge^L A) = \bigwedge^M \varphi[A]$ whenever $\bigwedge^L A$ exists in L.

Sometimes, as the next proposition indicates, the first factor of an α -complete map is also α -complete. As usual, $\gamma: M \hookrightarrow N$ denotes that γ is injective.

3.2 Proposition. Let $\varphi: L \to M$ and $\gamma: M \hookrightarrow N$. If $\gamma \circ \varphi$ is α -complete, then φ is α -complete.

Proof. Let $c \in L$ and suppose $c = \bigvee^L A$ where $A \subset L$ and $|A| < \alpha$. We claim that $\varphi(c) = \bigvee^M \varphi[A]$. Suppose not. Then there is a $b \in M$ such that $\varphi(c) > b > \varphi(a)$ for all $a \in A$ (> means strictly greater than). Because γ is injective we have $\gamma \circ \varphi(c) > \gamma(b) > \gamma \circ \varphi(a)$ for all $a \in A$. But this contradicts the assumption that $\gamma \circ \varphi$ is α -complete. For then $\gamma \circ \varphi(c) = \bigvee^N \gamma \circ \varphi[A]$.

Recall from the introduction the definition of an α -full subspace.

Note, for $L \subseteq M$, it is possible for L to be α -full, but not α -completely embedded, in M.

3.3 **Example.** Let X be a non- ω_1 -disconnected Boolean space. Then there is a cozero set U such that \overline{U} is not clopen. Let $L = \{f \in C(X) : f[X \setminus U] = r \text{ for some } r \in \mathbb{R}\}$. Clearly, L is ∞ -full in C(X), but L is not even ω_1 -completely embedded in C(X): Since there are clopen sets $\{V_n : n \in \mathbb{N}\}$ and C such that $U = \bigcup_n V_n$ and $U \subseteq C$, it is obvious that the sup of $\{\chi_{V_n}\}$ in C(X) is not $\mathbf{1}$ $(\chi_c \geq \chi_{V_n} \text{ for all } n \in \mathbb{N})$. However, $\bigvee_n^L \chi_{V_n} = \mathbf{1}$ because, if $h \in L$ and $h \geq \chi_{V_n}$ for all $n \in \mathbb{N}$, then $h(x) \geq 1$ for all $x \in U$. Therefore $h(x) \geq 1$ for all $x \in \overline{U}$, but then, since $X \setminus U \cap \overline{U} \neq \emptyset$, it follows that $h > \mathbf{1}$.

However, if M is α -complete, then the α -full subspaces of M are easy to identify. See [S, §23]. We have

3.4 **Proposition.** Let $\varphi: L \hookrightarrow M$ be an embedding and suppose M is α -complete. Then $\varphi[L]$ is α -full in M if and only if both L and φ are α -complete.

Proof. Verification is straightforward.

3.5 **Proposition.** Let $L \subseteq M \subseteq N$. If L is α -full in M and M is α -full in N, then L is α -full in N.

Proof. Let $A \subset L$, $|A| < \alpha$, and $a = \bigvee^N A$. Since M is α -full in N, we have that $a \in M$ and $\bigvee^M A = \bigvee^N A$. Hence, since L is α -full in M, it follows that $\bigvee^L A = \bigvee^M A = \bigvee^N A$.

Let $S \subset L$. The smallest subspace of L that contains S is the intersection of all the subspaces of L that contain S. We denote this subspace by $\langle S \rangle^L$, and we say that S generates $\langle S \rangle^L$ in L. Moreover, $\langle S \rangle^L$ is the smallest subset of L that contains S and is closed under the finite vector lattice operations.

Now for given α , one may ask if there is a smallest α -complete subspace of L that contains S? In general, this question does not always make sense because there may not be any α -complete subspace of L that contain S (e.g., C([0,1]) contains no ω_1 -complete subspaces). However, there are always α -full subspaces of L that contain S.

Recall, for $L\subseteq M$, we say that L α -generates M if M is the smallest α -full subspace of M that contains L. That is, if L' is α -full in M and $L\subseteq L'$, then L'=M. For $S\subseteq M$ we say S α -generates M if $\langle S \rangle$ α -generates M.

Clearly, an arbitrary intersection of α -full subspaces of M is an α -full subspace of M. Therefore, for $L \subseteq M$, the subspace of M which L α -generates, denoted $\langle L \rangle_{\alpha}^{M}$, is the intersection of all the α -full subspaces of M that contain

L. However, this "outside in" description does not provide much information about $\langle L \rangle_{\alpha}^{M}$. Is the inclusion of L into $\langle L \rangle_{\alpha}^{M}$ epic in some sense? How big is $\langle L \rangle_{\alpha}^{M}$? To answer these and other questions about $\langle L \rangle_{\alpha}^{M}$ we use an "inside out" construction of $\langle L \rangle_{\alpha}^{M}$.

In what follows below, we may assume, without loss of generality, that α is a regular cardinal because: α^+ is always a regular cardinal, and the α -completeness properties of objects and morphisms are equivalent to their respective α^+ -completeness properties when α is a singular cardinal.

3.6 **Definition.** Let $L \subseteq M$. Fix an $\alpha < \infty$ and define

$$S^M_{\alpha}(L) = \left\{ \bigvee^M A : A \subset L, |A| < \alpha, \bigvee^M A \text{ exists} \right\}.$$

For ordinals $\xi < \alpha$ we recursively define $L(\xi)^M$ (omitting ξ when the context is clear) by setting:

 $L(0)=L\,,$

 $L(\xi) = \langle S_{\alpha}(L(\xi - 1)) \rangle$ if ξ is not a limit ordinal,

 $L(\xi) = \bigcup_{\sigma < \xi} L(\sigma)$ if ξ is a limit ordinal.

Finally, we define $\langle L \rangle_{\alpha}^{M} = \bigcup_{\xi < \alpha} L(\xi)$.

Note, we also omit the superscript M in $\langle L \rangle_{\alpha}^{M}$ whenever the context is clear.

- 3.7 **Lemma.** Let $L \subseteq M$ and $\alpha < \infty$.
 - (a) $\langle L \rangle_{\alpha}$ is a subspace of M.
- (b) If two α -complete morphisms from $\langle L \rangle_{\alpha}$ agree on L, they are equal. One might say the embedding of L into $\langle L \rangle_{\alpha}$ is "epic for α -complete morphisms" [H].
 - (c) If $L \subseteq^{\alpha} M$, then the embedding of L into $\langle L \rangle_{\alpha}$ is epic in $Arch(\alpha)$.
 - (d) $|\langle L \rangle_{\alpha}| \leq |L|^{\alpha}$.
 - (e) If $L \subseteq M \subseteq N$ and M is α -full in N, then $\langle L \rangle_{\alpha} \subseteq M$.
 - (f) $\langle L \rangle_{\alpha}$ is α -full in M, and L α -generates $\langle L \rangle_{\alpha}$.
 - (g) If M is α -complete, then $\langle L \rangle_{\alpha}$ is α -complete and $\langle L \rangle_{\alpha} \subseteq^{\alpha} M$.

Proof. (a) Clear.

- (b) Let $\gamma_i: \langle L \rangle_\alpha \to N$ be α -complete with i=1,2, and suppose $\gamma_1|L=\gamma_2|L$. We claim $\gamma_1|L(\xi)=\gamma_2|L(\xi)$ for all $\xi<\alpha$, from whence, (b) will follow. We proceed by transfinite induction. The claim is true for L(0)=L. Suppose it is true for all ordinals $\sigma<\xi$. If ξ is a limit ordinal, it is clear from the definition of $L(\xi)$ that $\gamma_1|L(\xi)=\gamma_2|L(\xi)$. If ξ is not a limit ordinal, then $L(\xi)=\langle S_\alpha(L(\xi-1))\rangle$. It suffices to see that $\gamma_1=\gamma_2$ on the set $S_\alpha(L(\xi-1))$. Let $b\in S_\alpha(L(\xi-1))$. Then there is a set $A\subset L(\xi-1)$ with $|A|<\alpha$ such that $b=\bigvee^{(L)_\alpha}A$. So $\gamma_1(b)=\bigvee^N\gamma_1[A]=\bigvee^N\gamma_2[A]=\gamma_2(b)$.
 - (c) Apply 3.2 and (b) above.
- (d) Clearly, $|S_{\alpha}(L)| < |L|^{\alpha}$, so it follows that $|\langle S_{\alpha}(L) \rangle| < |L|^{\alpha}$. Transfinite induction gives us that for each $\xi < \alpha$, we have $|L(\xi)| < |L|^{\alpha}$, hence $|\langle L \rangle_{\alpha}| = |\bigcup_{\xi < \alpha} L(\xi)| \le |L|^{\alpha}$.
- (e) Clearly, if M is α -full in N and $L \subseteq M$, then $\langle S_{\alpha}^{N}(L) \rangle^{N} \subseteq M$. Transfinite induction implies that $L(\xi)^{N} \subseteq M$ for all $\xi < \alpha$, hence $\langle L \rangle_{\alpha}^{N} \subseteq M$.
- (f) Let $A \subset \langle L \rangle_{\alpha}$ with $|A| < \alpha$. For each $a \in A$, $a \in L(\xi_a)$ for some $\xi_a < \alpha$. Therefore, $\sup_A \xi_a = \kappa < \alpha$. It follows that $A \subset L(\kappa)$. So if $b = \bigvee^M A$, then $b \in S_{\alpha}(L(\kappa+1)) \subset \langle L \rangle_{\alpha}$.

444 A. J. MACULA

To see that L α -generates $\langle L \rangle_{\alpha}$ let $L \subseteq L' \subseteq \langle L \rangle_{\alpha}$ and suppose L' is α -full in $\langle L \rangle_{\alpha}$. Then L' is α -full in M ((c) here). Therefore it follows that $L' = \langle L \rangle_{\alpha}$ ((e) here).

- (g) Apply (f) here then 3.4.
- 3.8 **Definition.** For a given L, (φ, M) is called a *free* α -regular extension of L if it satisfies the following conditions.
 - (i) φ M are α -complete.
 - (ii) $\varphi[L]$ α -generates M.
- (iii) For each α -complete $\gamma:L\to N$ with N α -complete, there is a unique α -complete morphism $\tau:M\to N$ such that $\gamma=\mu\circ \varphi$.

We say that (φ, M) is a free α -extension of L if it satisfies the following conditions.

- (i') M is α -complete.
- (ii') $\varphi[L]$ α -generates M.
- (iii') For each $\gamma: L \to N$ with N α -complete, there is a unique α -complete morphism $\tau: M \to N$ such that $\gamma = \tau \circ \varphi$.

Note, conditions (iii) and (iii') respectively imply that free α -regular extensions and free α -extensions of L are essentially unique.

Below we construct, for each L, the free α -regular extension and the free α -extension.

For a fixed $\alpha < \infty$ and L, let T be a fixed set with $|T| = |L|^{\alpha}$. Let $A_{\alpha}(T)$ be the *set* of all α -complete Arch objects which have T as the underlying set. Let I and J be sets of morphisms defined as follows:

$$I = \{ \varphi : L \to M : M \in A_{\alpha}(T), \varphi \text{ is } \alpha\text{-complete} \},$$

 $J = \{ \gamma : L \to M : M \in A_{\alpha}(T) \}.$

If we let M_{φ} and M_{γ} be the codomains of φ and γ respectively, we can see that L is naturally embedded in each of the products $\prod_I M_{\varphi}$ and $\prod_J M_{\gamma}$ by means of the evaluation map, e.g., $e: L \hookrightarrow \prod_I M_{\varphi}$ defined by $e(a)_{\varphi} = \varphi(a)$ for all $a \in L$. Since the operations in Arch products are coordinatewise it is straightforward to see that $\prod_I M_{\varphi}$ and $\prod_J M_{\gamma}$ are α -complete, $L \subseteq^{\alpha} \prod_I M_{\varphi}$, and $L \subseteq \prod_J M_{\gamma}$. Define

$$FR_{\alpha}L = \langle L \rangle_{\alpha} \subseteq^{\alpha} \prod_{I} M_{\varphi}$$
 and $F_{\alpha}L = \langle L \rangle_{\alpha} \subseteq \prod_{I} M_{\gamma}$.

Note that the products in Arch and \mathcal{W} are the set-theoretic products with coordinatewise operations, and the product in \mathcal{S} , of a set of \mathcal{S} -objects M_i , is obtained by first forming the product in Arch, and then taking the principal ideal generated by the element (u_i) , where u_i is the strong unit of M_i .

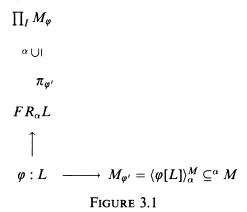
3.9 **Theorem.** Let i be the inclusion of L in $FR_{\alpha}L$ and i' be the inclusion of L in $F_{\alpha}L$. Then $(i, FR_{\alpha}L)$ and $(i', F_{\alpha}L)$ are the free α -regular extension and the free α -extension of L respectively.

Proof. We prove that $(i, FR_{\alpha}L)$ is the free α -regular extension of L. The proof that $(i', F_{\alpha}L)$ is the free α -extension of L is similar.

Since $FR_{\alpha}L$ is α -complete, $F_{\alpha}L\subseteq^{\alpha}\prod_{I}M_{\varphi}$, and L α -generates $FR_{\alpha}L$ (3.7(g), (f)), it suffices to see that any α -complete morphism $\varphi:L\to M$, with M α -complete, can be extended to an α -complete morphism $\overline{\varphi}:\prod_{I}M_{\varphi}\to$

M. We will show that $\overline{\varphi}$ is essentially a projection out of $\prod_I M_{\varphi}$. (Note, projections are ∞ -complete.)

Let $\varphi: L \to M$ be α -complete and let $M_{\varphi'} = \langle \varphi[L] \rangle_{\alpha}^{M}$. Since $M_{\varphi'}$ is α -complete and $|M_{\varphi'}| < |L|^{\alpha}$ (3.7(g), (d)), $M_{\varphi'}$ is isomorphic to some member of $A_{\alpha}(T)$. Therefore we can consider the morphism $\varphi': L \to M_{\varphi'}$, where $\varphi'(a) = \varphi(a)$ for $a \in L$, to be a member of I (3.2). Moreover, since $M_{\varphi'} \subseteq^{\alpha} M$ (3.7(g)), we need only to extend φ to an α -complete morphism $\overline{\varphi}: \prod_{i} M_{\varphi} \to M_{\varphi'}$. This is easily done by taking $\overline{\varphi} = \pi_{\varphi'}$, where $\pi_{\varphi'}$ is the φ' projection out of the product $\prod_{I} M_{\varphi}$. See Figure 3.1.



Recall in an abstract category \mathscr{B} , a full subcategory \mathscr{A} is called an *epire-flective* subcategory of \mathscr{B} if, for each $B \in |\mathscr{B}|$, there is an $A_B \in |\mathscr{A}|$ and an epimorphism in \mathscr{B} , $e: B \to A_B$, such that for each \mathscr{B} morphism, $\overline{f}: B \to A$, to an $A \in |\mathscr{A}|$, there exists a (necessarily) unique \mathscr{A} morphism, $\overline{f}: A_B \to A$, satisfying $f = \overline{f} \circ e$. (e, A_B) is called the \mathscr{A} epireflection of B. (Note, epireflections are essentially unique.)

The existence of the free α -regular extension and 3.7(c) together imply:

3.10 **Theorem.** In $Arch(\alpha)$, full subcategory of α -complete objects is epire-flective, and, for each L, $(i, FR_{\alpha}L)$ is the α -complete epireflection of L in $Arch(\alpha)$.

Note all the results (in, and about, Arch and $Arch(\alpha)$) of this section have analogs in \mathscr{W} , $\mathscr{W}(\alpha)$, \mathscr{S} , $\mathscr{S}(\alpha)$, $\mathscr{B}\mathscr{A}$ and, $\mathscr{B}\mathscr{A}(\alpha)$. Moreover, the proofs, are essentially identical to those in Arch and $Arch(\alpha)$. Most importantly, for each \mathscr{W} (and \mathscr{S}) object, there is, in \mathscr{W} (and \mathscr{S}), a free α -regular extension and a free α -extension. And, as in $Arch(\alpha)$, we have the following:

3.11 **Theorem.** In $W(\alpha)$ [and $S(\alpha)$], the full subcategory of α -complete objects is epireflective, and, for each $L \in |W|$ [$L \in |S|$], the W [S] free α -regular extension $(i, W - FR_{\alpha}L)$ [$(i, S - FR_{\alpha}L)$] is the α -complete epireflection of L in $W(\alpha)$ [$S(\alpha)$].

4. α -disconnected α -SpFi coreflections

Consider the \mathcal{W} -free α -regular extension $(i, FR_{\alpha}C(X))$, and the \mathcal{W} -free α -extension $(i', F_{\alpha}C(X))$, of C(X). Let $m_{\alpha}X = Y(FR_{\alpha}C(X))$ and $M_{\alpha}X =$

446 A. J. MACULA

 $Y(F_{\alpha}C(X))$. $(m_{\alpha}X, Y(i))$ and $(M_{\alpha}X, Y(i'))$ are preimages of X. See Figures 4.1 and 4.2.

$$C(X) \xrightarrow{i} FR_{\alpha}C(X)$$

$$X = Y(C(X)) \xleftarrow{Y(i)} Y(FR_{\alpha}C(X)) = m_{\alpha}X$$
FIGURE 4.1

$$C(X) \xrightarrow{i'} F_{\alpha}C(X)$$

$$X = Y(C(X)) \xrightarrow{Y(i')} Y(F_{\alpha}C(X)) = M_{\alpha}X$$
FIGURE 4.2

Let $m_{\alpha} = Y(i)$ and $M_{\alpha} = Y(i')$. We have the following:

- 4.1 **Theorem.** Let $\alpha < \infty$.
 - (a) $m_{\alpha}X$ and $M_{\alpha}X$ are α -disconnected.
 - (b) In α -SpFi, m_{α} is monic.
- (c) If $f: Y \to X$ is an α -SpFi and Y is α -disconnected, then there is a unique α -SpFi morphism $\overline{f}: Y \to m_{\alpha}X$ such that $f = m_{\alpha} \circ \overline{f}$.
- (d) If $h: Y \to X$ is continuous and Y is α -disconnected, then there is a unique α -SpFi morphism $\overline{h}: Y \to M_{\alpha}X$ such that $h = M_{\alpha} \circ \overline{h}$.
- *Proof.* (a) $FR_{\alpha}C(X)$ and $F_{\alpha}C(X)$ are α -complete so $m_{\alpha}X$ and $M_{\alpha}X$ are α -disconnected (2.8).
 - (b) i is epic in $\mathcal{W}(\alpha)$; thus m_{α} is monic in α -SpFi (2.7).
- (c) $f': C(X) \to C(Y)$ is an α -SpFi morphism (2.4 and 2.6). And since C(Y) is α -complete (2.9), there is a unique α -complete $\mathscr W$ morphism $\overline{f}': FR_{\alpha}C(X) \to C(Y)$ such that $f' = \overline{f}' \circ i$. Hence $f = Y(f') = Y(\overline{f}' \circ i) = Y(i) \circ Y(\overline{f}') = m_{\alpha} \circ Y(\overline{f}')$. Take $\overline{f} = Y(\overline{f}')$. \overline{f} is an α -SpFi morphism (2.6).
 - (d) The proof of (d) is similar to that of (c).
- Let \mathscr{B} be a category and \mathscr{A} a subcategory of \mathscr{B} . We call \mathscr{A} a monocoreflective subcategory of \mathscr{B} if, for each $B \in |\mathscr{B}|$, there is a $A_B \in |\mathscr{A}|$ and a monic in \mathscr{B} , $m_B: A_B \to B$, such that for each \mathscr{B} morphism, $f: A \to B$, from an $A \in |\mathscr{A}|$, there is a (necessarily) unique \mathscr{A} morphism, $\overline{f}: A \to A_B$, satisfying $f = m_B \circ \overline{f}$. (A_B, m_B) is called an \mathscr{A} monocoreflection of B. (Note, monocoreflections are essentially unique.)
- 4.2 **Theorem.** In α -SpFi, the full subcategory of α -disconnected spaces is monocoreflective, and for each X, $(m_{\alpha}X, m_{\alpha})$ is the α -disconnected monocoreflection of X in α -SpFi.

Proof. Apply 4.1(b) and (c).

4.3 Remark. Let Ba(X) be the σ -algebra of Baire sets of X and let $\mathcal{Z}(X)$ be the σ -ideal generated by the nowhere dense zero-sets of X. In [BH₃] it is shown that $M_{\omega_1}X$ is the Stone space of Ba(X), and $m_{\omega_1}X$ is the Stone space of the quotient Ba(X)/ $\mathcal{Z}(X)$. Also, for X, the Stone space of the Borel sets modulo the meager Borel sets is called the absolute or Gleason cover, EX, of X

[PW], and $m_{\infty}X \cong EX$ [BHM, W]. See also [M₁, M₂]. Can $M_{\alpha}X$ and $m_{\alpha}X$, for general α , be represented in a similar fashion? I do not know the answer for arbitrary X, however, if X is α -cozero complemented, the answer is "yes" for $m_{\alpha}X$ [M₃]. X is α -cozero complemented if, for each $U \in \text{Coz}_{\alpha}(X)$, there is a $V \in \text{Coz}_{\alpha}X$ such that $U \cup V$ is dense in X, and $U \cap V = \emptyset$.

REFERENCES

- [B] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, R. I., 3rd ed., 2nd printing, 1973.
- [BH₁] R. N. Ball and A. W. Hager, Epicompletion of Archimedean 1-groups and vector lattices with weak unit, J. Austral. Math. Soc. Ser. A 48 (1990), 25-56.
- [BH₂] _____, Epicomplete archimedean l-groups and vector lattices, Trans. Amer. Math. Soc. 322 (1990), 459-478.
- [BH] _____, Characterization of epimorphisms in Archimedean l-groups and vector lattices, Chapter 8 Lattice-Ordered Groups, Advances and Techniques, (A. Glass and W. C. Holland, eds.), Kluwer, Dordrecht, 1989.
- [BH₄] _____, Application of spaces with filters to Archimedean l-groups, Proc. Conf. on Ordered Algebraic Structures, Curação, 1988 (J. Martinez, ed.), Kluwer, Dordrecht, 1989.
- [BHM] R. N. Ball, A. W. Hager, and A. J. Macula, An α -disconnected space has no proper monic preimage, Topology Appl. (to appear).
- [BHN] R. N. Ball, A. W. Hager, and C. Neville, The κ-ideal completion of an Archimedean l-group and the κ-quasi-F cover of a compact space, General Topology Appl., Proc. Northeast Topology Conf., Wesleyan Univ., 1988 (R.M. Shortt, ed.), Marcel Dekker, New York, 1990, pp. 7-50.
- [BKW] A. Bigard, K. Keimel and S. Wolfenstein, *Groupes et anneaux réticules*, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin, Heidelberg, and New York, 1977.
- [C] H. B. Cohen, The κ -extremally disconnected spaces as projectives, Canad. J. Math. 16 (1964), 253–260.
- [Co] P. Conrad, Minimal vector lattice covers, Bull. Austral. Math. Soc. 4 (1971), 35-39.
- [DHH] F. Dashiell, A. W. Hager and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
- [dJvR] E. DeJonge and A. C. M. Van Rooij, *Introduction to Riesz spaces*, Math. Centre Tracts, no. 78, Amsterdam, 1977.
- [G] A. M. Gleason, *Projective topological spaces*, Illinois J. Math. 2 (1958), 482–489.
- [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.
- [H] A. W. Hager, Boolean algebras with α -complete morphisms, unpublished manuscript.
- [HR₁] A. W. Hager and L. C. Robertson, Representing and ringifying a Riesz space, Symposia Math. 21 (1977), 411-431.
- [HR₂] _____, On imbedding into a ring of an Archimedean lattice-ordered group, Canad. J. Math. 31 (1979), 1-8.
- [Ha] A. W. Hales, On the non-existence of free complete boolean algebras, Fund. Math. 54 (1964), 45-66
- [HJ] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94.
- [HVW] M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-803.
- [HS] H. Herrlich and G. Strecker, Category theory, Allyn and Bacon, Boston, Mass., 1973.
- [HeR] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
- [K] J. Kerstan, Tensorielle Erweiterungen distributiver Verbände, Math. Nachr. 22 (1960), 1-20.
- [LZ] W. Luxemburg and A. Zaanen, Riesz spaces, Vol. I, North-Holland, Amsterdam, 1971.

- [M₁] A. J. Macula, Thesis, Wesleyan Univ., 1989.
- [M₂] \longrightarrow , α -Dedekind complete Archimedean vector lattices vs, α -quasi-F spaces, Topology Appl. (to appear).
- [M₃] _____, Monic sometimes means α -irreducible, General Topology and its Appl., Vol. 134, (S. J. Andima et al., ed.), Marcel Dekker, New York, 1991, pp. 239-260.
- [PW] J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York, 1988.
- [S] R. Sikorski, Boolean algebra, 3rd ed., Springer-Verlag, Berlin, 1969.
- [S₂] ____, On extensions and products of boolean algebras, Fund. Math. 53 (1963), 99-116.
- [W] R. G. Woods, Covering properties and coreflective subcategories, Proc. CCNY Conf. on Limits 1987, Ann. N. Y. Acad. Sci. (to appear).
- [Y] K. Yosida, On the representation of a vector lattice, Proc. Imp. Acad. Tokyo 18 (1942), 339-342.

DEPARTMENT OF MATHEMATICS, WESLEYAN UNIVERSITY, MIDDLETOWN, CONNECTICUT 06457